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O N  T H E  F R E E Z I N G  T I M E  O F  C Y L I N D E R S  A N D  
S P H E R E S  

S. V. Prolov UDC 637.52 

The Stefan problem is considered for freezing of spherical and cylindrical bodies submerged in a cooling 
agent. A method is suggested for analytical solution o/this problem. Formulas are obtained for the freezing 
time and volume-average temperatures of a cylinder and sphere after completion of the freezing process. 

1. Calculation of time necessary for freezing of a product and its subsequent holding at the volume-average 
temperature necessary for storage in a fast-freezing apparatus is important in food technology. 

The expression known in refrigeration technology as the Plank formula is most often used for determination 
of the freezing time: 

tf = O ?"cry _ Tc.a  + . ( 1 )  

Formula (1) was obtained with the following simplifying assumptions: 

1. Before freezing, the body was cooled to the cryoscopic temperature. 

2. In this body ice is formed without supercooling at the cryoscopic temperature. 

3. The body is homogeneous: the thermophysical properties of its frozen part are independent of 

temperature, the heat transfer coefficient and temperature of the cooling agent are independent of time, and the 
density of the body does not change during freezing. 

4. The heat capacity of the frozen part of the body is zero. 

There are many modifications of formula (1) that allow assumptions 1 -4  to be omitted. They can be 

divided into empirical, experimental correction factors entering into formula (1), and analytical, of which Ryutov's 

[1 ], Geints and Yushkov's [2 ], and Brazhnikov's works [3 ] seem to be most interesting. In those works the authors 

constructed approximate models of the dynamics of the freezing process for the case of a flat plate with assumption 

4 rejected. Their general idea can be characterized as follows: it is assumed that there exist phase interfaces between 

the frozen and unfrozen parts of the plate and that in the freezing process these interfaces move from the surface 

into the interior of the body. The freezing process is assumed to be completed when these interfaces join in the 

center of the plate. This assumption is not quite realistic, but it can be adopted as a first approximation. With this 

assumption, analytical description of the freezing process is reduced to solution of the so-called Stefan problem. 

In [1-3 ], for approximate solution of this problem, the temperature distribution in the frozen part of the 
plate was approximated by a certain expression that was substituted into equations of the Stefan problem. Then, 

the time function of the thickness of the frozen layer was calculated and, as a consequence, the freezing time was 
found. 

In the present work a similar calculation procedure is used for a cylinder and sphere. It is most similar to 

the procedure used by the authors of [2 ], where for a plate with thickness 2R the following expression was obtained 
for the freezing time: 

Tcry - Tc. a 2 a 1 - Bi " 
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After completion of freezing, the temperature distribution in the plate appears linear: 

Bi x 
r (x; tf) = rcry Bi + 1 (Tory - Tc.a) R '  (3) 

The first term in relation (2) is Plank formula (1) and the second term is a correction for nonzero heat 
capacity of the frozen body. 

The formulas for freezing time obtained by Ryutov [ 1 ] and Brazhnikov [3 ] are different from (2) but give 

very similar numerical results. 

2. Let us have a cylinder with radius R cooled to the cryoscopic temperature/ 'cry. At time t = 0, the cylinder 
is submerged in a cooling agent with temperature Tory; R - A(t) < r < R; the temperature of the unfrozen part is 

assumed to be equal to the cryoscopic temperature/ 'cry. The mathematical formulation of the problem is expressed 
as 

d T  ~t 
m 

dt Cp 

d2r+l dT[; r(R;O)= \ 

r . y  
d r )  

d T  (R; t) = a d---~ - ~ ( r ( R , t ) -  Tc.a); T ( R - A ( t ) ; t )  = rcry,  (4) 

d a  ( t )  = _ a a T  
qP dt ~ ( R - A ( t ) ; 0 ;  A ( 0 ) = 0 .  

Equation (4) is the heat-conduction equation for the frozen part of the body with initial and boundary 

conditions, the condition that at the freezing front the temperature is equal to the cryoscopic temperature,  and the 
equation of motion of the front with an initial condition. 

For convenience, new dimensionless variables are introduced: the radius p, time r, thickness of the frozen 
layer 6, and temperature V: 

r At A T -  Tc. a 
p = - - ;  r - - -  ~ ( r ) = - - ;  V -  

R CRR 2 '  R Tcry - Tc. a 

In terms of these variables Eq. (4) looks as follows: 

d__V_V = __dzV + _1 __dV ; V(I ;  0) = 1 ., (5) 
d~ dp 2 p dp 

all / (1;  v) = - Bi V(1;  r)" 
dp 

(6) 

v ( 1  - ~ (r); r) = 1 ; (7) 

as 

d___~3 (r) = _ 1 dV  (l  - c 3 ( r ) ; r ) "  ~(0)  = 0 .  (8) 
d~ Ko dp ' 

In order to find an approximate solution of Eq. (5)-(8), the function V(p, r) is expressed in a series form 

+00 

v (p; ~) = Y~ ~ (~) R, ( p ) ,  
i=0 

(9) 
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where the functions aiOr) and Ri(P) are defined as follows: 

R 0 ( p ) =  1; R l ( p ) = l n p ;  

F 

+ (I /v)  Ri+2 (p)) = ,~ (0  Ri (p) ; 

,~i+2 (0 (R~+2 (p) + 

t 

Ri+ 2 (1) = Ri+ 2 (1) = 0 .  ( lO)  

In relations (10) the first two terms of the series are a quasisteady approximation, which is subsequentty 
iterated by equation (5). Solving equation (I0) for i = 0, 1, we obtain 

2 , p2 
R 2 ( p ) = p  - 2 1 n p -  I" R 3(p) = ( l n p -  1 ) + l n p +  1; 

a 2(3) = a  O ( Q / 4 ;  a 3(3) = a '  1 0 0 / 4 .  (II) 

Substitution of (9) into (6) gives 

Ct I ( T )  = - -  Bi a 0 ( r ) .  (12) 

Using (9) and (7) and taking only the first two terms of the series, we obtain 

1 (13) 
a 0 ( Q  = 1 - Bi ln(1  - 6 ) "  

Equation (13) relates the surface temperature of the cylinder to the thickness of the frozen layer. 
So far, the entire calculation procedure is, in essence, similar to the scheme used in [2 ] for a plate. 
Next, Eq. (9) should be substituted into (8) and only the first four terms taken. Then, we have a differential 

equation with separated variables with the unknown function 6(3). However, integration of this equation would 

result in a calculated relation predicting an infinite freezing time. Nevertheless, this obstacle can be overcome. 
Equation (8) is transformed to the form 

1--[-- In p 
6 ( 0 =  Ko [ l n p  ) 

+ v (p; 3)) 
P ln2pJ  p=l -~(0 

1( = - ~  I n ( l -  e  _xem/i 1 ) 
+ (1 - 6 ( Q )  ln(1 - 6 ( Q )  " (8') 

Substitution of (9) into Eq. (8') with only the first four terms taken and with allowance for (1)-(13) results 

in the following equation: 

1 (1 - 6)  - dr Ko (l - Bi In (1 - 6)) (1 - d) -~ ~ = --~- 

2Bi(l -c3) 21n(l -c~) + (B i+  I)(2-6) 
4(1 - B i l n ( l  - d ) ) ( 1  - 6 )  In(1 - 8 )  

(t4) 

Equation (14) is easily integrated in quadratures: 

= ~  1 +~-~ 6 -  + ( 1 - 6 )  21n(1 - 6 )  - - ~ + - u  

1 ~ 2 B i ( l - x )  2In(1 - x ) +  (Bi+ 1 ) x ( 2 - x )  
- 4  0 (1 - Biln(l  - x ) ) ( 1  - x )  ln(1 - x )  d x .  

(15) 
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Integral (15) cannot be expressed in terms of any tabulated functions. Substituting ~ -- 1 into (14) and 

changing the variables y = - 2  In (i - x) for convenience, we obtain the freezing time. It will be writ ten directly in 

dimensional quantities: 

Rpq ( _ ~ + 1 )  + _ ~ F I ( B i )  (16) 
tf = 2 (Tcry - T c .) 

where 

1 + f * * B i + l - ( l + B i ( l + y ) ) e x p ( - Y ) d y  1 
F 1 (Bi) = ~- o y (2 + Bi y) - 4" 

T h e  in tegra l  Fl (Bi)  can  on ly  be ca lcu la ted  expl ic i t ly  at Bi = +oo a n d  Bi - 0: F l ( + o o ) =  0.25; 

FI(0) = + oo. However, F1 (Bi) is easily found numerically. The calculation results show that in the range of the 

Biot numbers  that are usually realized in practice, Bi E (0, 2; 10), this integral is well approximated by the 

expression: 

1 0.084 In Bi + 0.27 
F 1 (Bi) = ~ + Bi 

Just as in formula (2), in (16) the first term is Plank formula (1) and the second term is a correction for 

the nonzero heat capacity of the frozen part of the body. 

Unfortunately,  the temperature distribution that sets in after  completion of freezing cannot  be calculated, 

since series (9) diverges at r = rf. 

For the case of a plate, expression (3) is obtained by approximation of T(x; tf) by a s teady-s ta te  (i.e., 

linear, for a plate) distribution, proceeding from known temperatures in the center  and on the surface. 

In the present  case of a cylinder,  it is impossible to approximate T(r; tf) by a s teady-s ta te  distribution, 

since this distribution has a singularity in the center. However, the volume-average tempera ture  occurring af ter  

completion of freezing can be calculated, and this is the most important point in food technology. To do this, using 

the known surface temperature  (13), we calculate the total heat flux Q through the cylindrical surface for the entire 

freezing time: 

ZTrR 3 (Tcry -- Tc.a) Cp I dT 
Q = .f a o (6)  d6 = 

o 

= z~R2pq + z~R 2 ( T c r y -  

/ 

1 [ _ Bi(1 - 6 )  
Tc.a) Cp f 

o [1 - B i l n ( 1 - 6 )  

2Bi 2(1 - 6 )  ln(1 - 6 )  + B i ( B i +  1 ) c 5 ( 2 - 6 ) ]  d6 .  

2 (1 Bi In (1 6)) 2 (1 - 6) In (1 - 6) J 
Hence, the volume-average temperature after  completion of freezing is equal to 

Tav = Tc. a + (Tcry - Tc.a) F 2 (Bi) ,  (17) 

where 

+oo - + 2 (Bi + 1) (1 + y)) exp ( -  y) dy. F 2 (Bi) = 1 - Bi f 2 (Bi + 1) (Bi y2 
0 y (Bi y + 2) 2 

Here the integral can be calculated explicitly only for Bi -- +oo and Bi = 0; F2(+oo ) = 0.5; F2(0) = 1. 
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Using the numerical  results, it is possible to select an approximating formula for F2(Bi): F2(Bi) ~- 
(3Bi + 5)/(6Bi + 5). 

3. Let us consider the freezing of a sphere. The notation is the same as in Sect. 2. The heat-conduction 
equation has the form 

dV d2V 2 dV 
- - = - - + -  ~ ;  V(1;O)= 1. 
dr dp 2 p dp 

The other equations of the problem are similar to Eqs. (6)-(8). The function V(p: r) is expressed by series 
(9), in which the functions ai(r) and Ri(p) are defined as 

R o(p) = 1; R! (p) = l - p . ,  
P 

( 2 ) 
~+2  (~) RI+z (p) + p '%2 (p) = '~i (O R~ (p) ; 

t 

Ri+ 2 (1) = Ri+ 2 (1) = O. 

The solution of these equations for i ffi 0, 1 is 

Rz(p)  =p2 + 2 _  3; R 3(p) = (I - p ) 3 ;  
P P 

ct 2(r)  =a O(r)/6; a 3(~) =-a' 1 ( r ) / 6 .  

As in Sect. 2, we obtain 

1 - 6  
a 1 (r) = Bia O(r); a O(r) = 1 + ( B i -  1)6" 

For a sphere, the same difficulty appears that exists for a cylinder. The same way out of the situation can 
be suggested. Equation (8) is transformed to 

' 1 1 (~pp(pV(p; 
6 ( r ) =  Ko p r))-V(P;r))lp=~_,~(~ ) 

ll{  I Ko 1 - c $  -~p(pV(p;r)) p=l-~ - 1}. (8") 

Substituting four terms of series (9) into (8"), we obtain the following equation: 

d~ 

dr 

Bi(1 + ( B i -  1)~) 
1 c32" Ko(1-c3) (1  + ( B i -  1)c3) 2+Bit3 + - ~ B i ( B i -  1) 

Integration gives 

c~ 3 6 2 } c32 
r = --B-i-K~ _ (Bi - 1) -~- + (Bi - 2) -~- + c3 + -~- + 

6 l 
+ In (1 + (Bi - 1) c3) (18) 

2 ( B i -  1) 2 ( B i -  1) 2 
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Substituting 6 -. 1 into Eq. (18), we obtain the freezing time. It will be written directly in dimensional 
quantities: 

tf = 3 (Tcry - Tc.a) + 
+ 2..~{~.+ I Bi (1 l n B i ~  

a Bi - 1 Bi "~ 1") }" (19) 

Just as in the formulas for a plate Eq. (2) and a cylinder Eq. (16), the first term is Plank formula (1) and the 
second term is a correction for heat capacity of the frozen part. 

Just as for a cylinder, in the case of a sphere it is impossible to calculate the temperature distribution upon 
completion of freezing, but it is possible to determine the volume-average temperature in terms of the total heat 
flux 

tf 
Q = 4:tn2a (Tcry - Tc.a) f a 0 (~) dr = 

0 

4:z R 4a (Tcry-  I dr 4 3 Tc.a) Cp f ao (~) "~ d~ = ~ ~R qp § 
0 

+4tR3Cp(Tcry_Tc.a)  3Bi I1 1 + l n B i  ] 
3 2 (Bi - 1) [2 Bi - 1 (Bi - 1)2I" 

Hence the volume-average temperature of a sphere upon completion of freezing is 

Tav=Tcry_(Tcry_Tc.a) 3Bi {~ 1 + lnBi } R T  1 " (20) 
2 ( B i -  1) Bi 1 ( --'.)2 

4. In summary, formulas (2) and (3) (for a plate) are supplemented by formulas (16) and (17) for a 
cylinder and equations (19) and (20) for a sphere. Thus, the list of simple bodies is exhausted and it is possible 
to calculate the freezing time and the time necessary for aftercooling for a broad class of foods. 

N O T A T I O N  

tf, freezing time, sec; R, radius of cylinder or sphere, m; p, density of body, kg/m3; q, specific heat of 

phase transition, J/kg; 2, thermal conductivity of frozen part of body, W/(m. K); a, coefficient of heat transfer 
from surface of body, W(m 2. K) ;Tcry , cryoscopic temperature, K; Tc.a, temperature of cooling agent, K; C, specific 
heat of frozen part of body, J/(kg.  K) ; Bi ffi aR/;t, Biot number, dimensionless; r, instantaneous radius of cylinder 
or sphere, m; t, current time, sec; ACt), thickness of frozen layer, m; T(r; t), temperature in frozen part of body, 
K; Ko -- q/C(Tcry - Tc.a), Kossovich number, dimensionless; Q, total heat flux through surface of body for entire 
freezing time, J; Tar, volume-average temperature upon completion of freezing, K. 

R E F E R E N C E S  

. 

2. 

. 

D. A. Khristodulo and D. G. Ryutov, Fast Freezing of Meat [in Russian ], Moscow (1936). 
I. G. Alyamovskii, R. G. Geints, N. A. Golovkin, et al., Analytical Investigation of Technological Processes of 
Cold Processing of Meat [in Russian ], Moscow (1970). 
A. M. Brazhnikov, V. A. Karpychev, and A. I. Peleev, Analytical Methods for Investigation of Heat Processing 
of Meat [in Russian ], Moscow (1974). 

314 


